1. $T$ : Type \\[0ex]2. $l_{1}$ : $T$ List \\[0ex]3. $v$ : $T$ \\[0ex]4. $l_{2}$ : $T$ List \\[0ex]5. $L$ : $T$ List \\[0ex]6. $l_{2}$ = ($L$ @ $l_{1}$) \\[0ex]7. $\parallel$$l_{1}$$\parallel$ $<$ $\parallel$$l_{2}$$\parallel$ \\[0ex]8. $l_{2}$[($\parallel$$l_{2}$$\parallel$ {-} ($\parallel$$l_{1}$$\parallel$+1))] = $v$ \\[0ex]9. $\neg$($\uparrow$null($L$)) \\[0ex]10. ${\it L'}$ : $T$ List \\[0ex]11. $L$ = (${\it L'}$ @ [last($L$)]) \\[0ex]12. 0 $<$ $\parallel$$L$$\parallel$ \\[0ex]$\vdash$ last($L$) = $L$[(($\parallel$$L$$\parallel$+$\parallel$$l_{1}$$\parallel$) {-} ($\parallel$$l_{1}$$\parallel$+1))]